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El presente trabajo estd basado en el articulo del arquitecto espafiol Félix
Candela, profesor de la Facultad de Arquitectura de Méjico, D. F., publicado
en el Journal of the American Concrete Institute, v. 26, No. 5, Jan. 1955, y titu-
lado “Structural Application of Hiperbolic Paraboloidical Shells”.

I. PREAMBULO

En la construccién moderna el empleo de las bévedas
se va haciendo cada vez mas frecuente. ;

El abandono parcial de los techos planes no obedece
a capricho. Las construcciones abovedadas se imponen
no solamente por su belleza, sino principalmente por
su economia y sus posibilidades técnicas. El Banco
Obrero, en el conjunto de sus trabajos del afio presen-
te (1956), ha dado amplia cabida al empleo de cubiertas
abovedadas. Mé4s de 40 edificios han sido construidos con
este sistema, que es, a la vez, antiquisimo y muy meo-
derno.

Nuestra experiencia ha sido, afortunadamente, satis-
factoria desde el punto de vista técnico, y nos sentimos
muy honrados al presentarla a nuestros colegas, con el
deseo de que pueda serles fitil y con la esperanza de
mejorar nuestros propios conocimientos con la colabo-

racién de su competente critica.

II. INTRODUCCION

El estudio de las membranas comprende dos partes.
La primera consiste en la consideracion, de caracter ge-
neral, del estado elastico (plano) de un punto ordinario
de la membrana. La segunda establece las ecuaciones
diferenciales de su equilibrio. Estas ecuaciones depen-
den del sistema de coordenadas elegido para representar
la membrana como la forma geométrica. En cada caso
se busca el sistema de coordenadas que conduzca a las
ecuaciones mas sencillas. Sin embargo, el proceso de
obtencién es, en todos los casos, el mismo. La integra-
ci6on del sistema de estas ecuaciones es un problema
puramente matematico. Cuando la obtencién de las fun-
ciones primitivas es muy laboriosa o no se conoce, pue-
den emplearse los métodos de integracién aproximada
(diferencias finitas). Las constantes de integracién se de-
terminan mediante condiciones prefijadas en los bordes
de la membrana. Por definicién, una béveda es mem-
brana cuando el sistema de lasAfuerzas exteriores que
en ella actia se equilibra con un sistema de fuerzas
interiores en el que los tensores de fuerzas unitarias
son planos y estan situados en los planos tangentes de
la membrana.

Las funciones primitivas determinan las reacciones de
la membrana a lo largo de sus bordes. Dichas reaccio-
nes tienen que ser récogidas generalmente mediante ele-

mentos constructivos ajenos a la membrana. Cuando el

peso de éstos es insignificante, pueden quedar sumergi-
dos en el espesor de ella. Generalmente no sucede asi.
El heso propio de los bordes suele no ser despreciable.
Si ha de ser resistido por la propia béveda, el régimen

de ésta deja de ser el de membrana.

1II. ESTADO ELASTICO PLANO

1. Consideramos un punto ordinario ‘O perteneciente
a una superficie S. Admitimos que, en un entorno espa-
cial de O suficientemente pequefio, el plano tangente
y la superficie estan confundidos. La parte de S interior
en el entorno espacial considerado es el entorno super-
ficial de O. Los entornos superficiales de los puntos or-

dinarios, si son suficientemente pequefios, son planos.

t

Fic. 1,

Sea (fig. 1) el entorno superficial del puntoi O. En su
plano, y con origen en O, se determinan dos semirrec-
tas (n:.t;) que forman un cuadrante positivo. Las se-
mirrectas n:.l: son, respectivamente, origen y extremo
del cuadrante. La semirrecta t; y su complementaria £
dividen el entorno en dos semientornos. Por convenio,
atribuimos a la semirrecta n; el semientorno que no la
contiene. Existe una correspondencia biunivoca entre las
semirrectas n: y los semientornos. Cada semientorno que-
da representado por la semirrecta correspondiente.

2. Supongamos determinada una funcién vectorial de

la semirrecta n; de tal modo que a cada semirrecta. n.

corresponda una fuerza F vinculada en O y situada en
el plano del entorno. Esta funcién, ademas, hara corres-
ponder a la semirrecta n’; complementaria de n: el vec-

tor —F opuesto a F.
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Para precisar la exposicion, supongamos también que
el entorno es circular, de didmeiro 3 y centro en O.
El segmento de la recta (#;+ ;) contenido en el en-
torno es el “borde” del semientorno determinado por ni.
Llamamos fuerza de borde correspondiente a n: al
vector 0 .F (siendo, en esta expresién, 0 un escalar).

A un borde de longitud igual a la unidad corresponde
una fuerza de valor vectorial F. Por esta razén, las fuer-
zas F se llaman “fuerzas unitarias”.

Postulado: La situacién mecdnica del semientorno liga-
do a n: es idéntica cuando se considera como parte del
entorno completo y cuando se considera separado de
su semientorno complementario y en su borde aplicada
la fuerza de borde. La fuerza de borde equivale, pues,
mecanicamente al semientorno complementario.

En lo sucesivo, la fuerza unitaria F se considera re-
presentada por sus dos proyecciones (N:.T:) ortogo-

nales, sobre (n:.t:), respectivamente.

ha de quedar cumplido, pues, por las otras tres, que son

infinitésimos de primer orden.

n
Supongamos que el 4ngulo en O vale —, que 04
2

y OB son los ejes Ox.0Oy de un sistema cartesiano,

que ® es el dngulo de n; semirrecta del borde AB, con
el eje OX, y que

a=cos » B=sen o
Los lados del tridngulo valen

AB = d\
04 =senw.AB =8 .d\
OB =cosw.AB.—=a .d\

Las dos ecuaciones del equilibrio son:

en el eje Ox:

—a.dN.N: 4 B.d\.Ty +a.dN.Ns—B.d\.Ts =0.
en el eje Oy: -

—a.d\.Tx —B.d\. N, —I—B.d)\.N,-[—a.dk.T,-l_:o,

.
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Fic. 2.
3. Fig. 2: Equilibrio de un tridngulo—El tridngu- o sea:
lo ABO esta contenido en el entorno superficial de O. —a.Ne +8.Ty+ a.Ns—3.Ts=0,
Las fuerzas exteriores que actian en 4 B O son exclu- —a.Tx —B.Ny +B.Ns+a.Ts=0.
sivamente superficiales, y definidas mediante una ley doiias cnnles ranilias
continua, que permite expresar su valor total para 4 B O . s
en la forma ¥V .dQ, donde V representa un vector fi- dr=sialnet ol el =14 (1))

nito y dQ el area de 4B O.

Tomando como bordes los tres lados del tridngulo y
separandolo del resto de la superficie, las tres fuerzas
de borde y la de superficie han de estar en equilibrio.

Como la fuerza de superficie es un infinitésimo de

segundo orden, se puede considerar nula. El equilibrio
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Ns=o'.Nz +$’.Ny-—a.ﬁ (Ty —T:)

En estas expresiones no interviene la distancia de O
a la recta AB. Por consiguiente, valen para el caso limi-
te de la recta AB perteneciente al punto O. Una vez de-
terminado el valor de la fuerza unitaria en dos bordes

ortogonales, queda determinado en todos los demas.
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4. Fig, 3: Equilibrio de un rectangulo—FEl rectan-
' gulo ABCD estd contenido en el entorno superficial
de O. Como en el caso anterior, se consideran sus lados
como bordes de separacion de la restante superficie, y
se desprecian las fuerzas superficiales por ser infinité-
simos de segundo orden. Se tiene

AB:CD:2.dy BC =DA =2 .dx.

La resultante de las fuerzas de borde es nula. Pero
el momento resultante, con relacién al punto O, ha de

cumplir la condicién

2.dy.Tx.2.dx+2.dx.Ty .2.dy =0,

que implica

T+ +Ty =0. (In
5. Formulas finales—Si en las expresiones (I) se pone
T: =—Ty =T,
resultado de la (II), queda

Ty=(0*—§).T—o.8(N:—N, )

Ns=o .Nu+8".Ny+2.0a.8.T n

Como
o’ — B = cos® v — sen® w =cos (2. »)
2aB=2.cos »w.sen v =sen (2. w).

se verifica

Ns —N,

Ts=T.cos(2.w)— .sen (2. w).

2
Para las raices de la ecuacién transcendente

e
tg(2.0) = ——m—— ’
Nz —Ny

se anula Ts.
Dicha ecuacién solamente es indeterminada si

T—Ns—N, =0,

en cuyo caso T;=0. Cuando Ts;= 0, la direccion n,
correspondiente se llama “principal”.

Por consiguiente, hay siempre en el entorno de O dos
direcciones principales, o todas sus direcciones son prin-
cipales.

Adoptando como ejes coordenados las dos direcciones
principales, y designando con (Nr .Tr) a la fuerza uni-
taria ligada a la direccion Or = ns, las expresiones (III)

adquieren la forma

Tr=a.8(Ny—Nz) % aw

Nr — Bg.Ny "I-a’.Nx

Los componentes coordenados (X .Y ) de (N .T )

en dichos ejes son:

X,-:a.Nr—B.Tr:a.Nx (V)
Y — B.Nr + (141 :B.Ny
y como
“+ =1
resulta
X! Y,?
o =il (VI)
]Vx’ Nyz

Los puntos extremos de los vectores fuerzas unitarias
pertenecen a la elipse representada por la férmula (VI),

que se llama “elipse de Lamé”.

9
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6. Fig. 4: Circulo de Mohr—Las férmulas (ITI) equi-
valen a las siguientes:
Ny — N
ITr=———.sen.(2.0)
(VID)
Ny + Nx N_y —Nx

Ny = + .cos.(2.w)
2 2

En el cuadrante (#;.n:) estas expresiones son las ecua-
ciones paramétricas de un circulo.
El valor maximo de la componente tangencial Tr es el

radio del circulo, es decir,

Emaxs —————
2
y siempre se produce en las bisectrices de las direcciones
principales.
Cuando las dos fuerzas unitarias principales son de

signo opuesto, es decir, cuando una es compresién y

.la otra es traccion, hay dos bordes, simétricamente situa-

dos con relacién a las direcciones principales, en los que
se anula la componente normal Nr. Dichos bordes so-
portan una fuerza unitaria tangencial “pura”, cuyo

valor es
Tr=J N, .N.
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Esta fuerza tangencial pura solamente coincide con

la fuerza tangencial maxima cuando

| No | =] Ny.|

La direccion w, correspondiente a los bordes de fuer-

za tangencial pura esta determinada por la relacion

VN, .N. V N«
g W = o

Ny Ny

Cuando se conocen los valores N;.N:.N; de los tres
componentes normales correspondientes a tres direccio-
nes ni.n:.ns de las cuales n: es bisectriz de las otras

dos y éstas, n,.ns, son ortogonales, la construccién del

Pa

& = S3

\

WS
o

2N2- di-Na
2

Nz‘

N3

Fre. 5.

circulo de Mohr queda determinada, puesto que la posi-

cién del centro C corresponde al valor

N:+ Ns
2

y se verifica

CS: = PsS..

7. El andlisis de las fuerzas internas de una mem-
brana estd completo cuando se conocen las dos direc-
ciones principales en cada uno de sus puntos y las
fuerzas unitarias que les corresponden. Las direcciones
principales constituyen, sobre la membrana, dos campos
ortogonales de direcciones, cuyas lineas envolventes se
denominan “lineas isostaticas”. Por consiguiente, para
cada sistema de cargas hay dos familias de lineas isos-
taticas ortogonales. Otros dos campos de direcciones que-
dan determinados mediante las direcciones de las fuerzas

unitarias tangenciales puras, cuando existen. La determi-
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nacion de las lineas envolventes de estos campos de di-
recciones es imprescindible para la colocacién correcta

de las armaduras de hierro.

IV. EL PARABOLOIDE HIPERBOLICO

1. Determinacién de la superficie—Un cuadrilitero
ABCD se llama “alabeado” cuando el plano determi-

nado por tres de sus vértices no contiene el cuarto.

A

o)

a1

b

"~
-

W
D

Fie. 6.

Existe un haz de planes H, de arista impropia, determi- ~
nada por los puntos impropios de los dos lados opues-
tos (AB, CD) del cuadrilatero.

Hay otro haz de planos H: de arista impropia, deter-
minada por los puntos impropios del otro par de lados

opuestos (BC.DA). Las rectas resultantes como inter-

seccién de un plano de H; con un plano de H: consti-

Fic 7.

tuyen una radiacién de rectas, cuyo vértice impropio es
la interseccion de las dos aristas impropias de H; y H,.
Cada plano de H: corta al par de lados AB.CD, o a
sus prolongaciones, en sendos puntos. Cada uno de estos
pares de puntos determina una recta, que se llama

“generatriz”’. El conjunto de las generatrices es una




“familia” de rectas, cuya superficie envolvente es, por
definicién, el paraboloide hiperbélico. El mismo proce-
so, ejecutado con los planos de H: y el par de lados
BC .DA, conduce a un paraboloide hiperbélico coinci-
dente con el anterior.

En efecto, el segmento II, tanto si se calcula mediante
¢l primer proceso como si se calcula mediante el segun-
do, vale

CC;
II[ = —

AB . AD

.AG . AE . (1

2. Adoptando como triedro cartesiano de referencia
el determinado por el plano BAD, el plano de H. que
pasa por AD y el plano de H: que pasa por AB, la ex-

presién (I) adquiere la forma

z=k.x.y \ (II)

Hay en el paraboloide hiperbélico un punte, llamado
“yértice”, en el cual
n

lx=0y———.

2

En efecto, para que (I) sea el vértice se deben veri-

ficar las siguientes relaciones entre sus coordenadas:

Zp=%s.cos(n— 0y ) = —x.cos O, e v
zo=F.x .y : e cos Oy
5 cos 0
Zo=195.c0s (n— 0z ) = —1y,.cos 0« l s
Za::k.xa.yo ‘ k

Para operar con el indicado triedro son importantes

las siguientes férmulas:

(o{ o
fo— e
AB . AD
AB? + AD?* — BD?
cosf, =
2.4AB.AD
BC* — AD* —CC!
cos Oy =
2.4D .CC:
CD*— AB* —CC!
cos 0 =

2.4B .CC:

Finalmente, si es 0 el angulo formado por las dos

generatrices que pasan por el vértice,

cos 0z — cos 0 .cos Oy

cos il =
sen 0. — senfy

Por consiguiente, cualquiera que sea el cuadrilatero
alabeado generador del paraboloide hiperbélico, me-
diante las expresiones anteriores se puede determinar
la posicién de su vértice y la del triedro correspon-

diente,

V. ECUACIONES DEL EQUILIBRIO

DE UNA MEMBRANA

1. Los valores angulares de las caras del triedro de
referencia son 0x. 0y. 0z La membrana estd represen-

tada por una funcién explicita:
z=1(x.y)

con derivadas de primero y segundo orden, y estas nlti-
mas continuas.

Representamos con dx; dy: los incrementos de las va-
riables indepenﬂientes. Represnetamos con Axz.A,z los
incrementos de la variable dependiente z cuando y o x,
respectivamente, permanecen constantes. Usaremos la no-

tacién de Monge para las derivadas parciales:

0z 0z
| qi= =
dx Oy
3z 3'z 3%z
r = — S =
oa dx.0y 3y*

y las restantes notaciones quedan determinadas median-

te la figura 8.

"l\ dx

i

2 / #L P,
' Fic. 8.

Se verifica

AN =dx* 4 Asz +2.dx. Az . cos 0y
Ay =dy* 4 Ayz* +-2.dy. Ayz . cos 0.

(n\:dxv 14+p*+2.p.cost,
dp:dyv 14+4q"+2.q.cos0x

Por el teorema de los senos

dxz d)\
sen wy = sen 0, :
0 sea:
d:z ; dz dx g
sen oy = .sen By, = ¢ senf, =
LEg T g LR
p.sen O,

V1+p’+2.p.cos 0,
(14 p.cos 0y)*

1+ p*+2p.cos by

cos’ 0y = 1— sen’ oy =
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Por consiguiente, valen las expresiones

p.sen Oy
sen v = :
V1+p’+2.p.cos fy
14 p.cosfy
cos v, =
V 1+p'+2.p.cos Oy
q.sen fx
sen v =
V 14q'+2.q.cos0x
14 q.cosfx

cos W =—

V 14q*+2.q.cos0x

El angulo ¢, determinado por los dos elementos

Iy

2. En el entorno superficial de Po (figs. 8 y 10) se
considera la fuerza unitaria del borde P, P: que se des-
compone en las direcciones PsP: y PoPs;. Sus dos

Ny

T

////II//////// 777777777 ///ﬂ\

Po d L

oblicuas se

proyecciones

designan, respectivamente,
con TA.NN. Por consiguiente, la fuerza total en el

borde es
C=ddsd e iy —d\ .NM).

Cada uno de estos dos componentes se proyecta sobre
los tres ejes de coordenadas, y asi resulta el cuadro

siguiente:
Ox Oy Oz
—d)\.Tl —dx.T)k (0] —p.dx.T)\
1+ p*+ 2pwly, 1+4p*+2pwi,
—d\h.Ny o — dxN\ —dx.n\.q || —mM8M8M8M8M8™——
14 ¢+ 2qwh. 144"+ 2qu.
lineales d\, dy, se deduce de las relaciones entre los o sea:
tridngulos esféricos de la figura 9, y vale BT
COS(P:COS(B:—UJP‘).COS(Q!;—"(D)\)"l‘ 2 3
cos 0z — cos 0 .cos Oy 1+ p*42pcos iy
+8€n(6x—(1)).sen(6y—'(ﬂ)\) —n;\:—dx.NX. =-——dx.v)\
p. sen 0: .sen 0Oy 14 q*+2qcos 0«

Si en el triedro de referencia son

n
0 = 0y =——
2
las férmulas anteriores se simplifican:
p 1
sen ay = cos ) = ————
Vit /1y
q 1
sen ® ————— cos v =
w e
Vite Vi+e
p.q+cos 0

cos ¢ =

Va+p).a+q
30

14 p*+2pcos b,
—C)\=—dx p.T\ 4+ q N\ ==
144"+ 2qcos 0

=—dx(p.TO+q.v),

poniendo, para simplificar la escritura,

1+ p*+ 2p cos b,
vl=N)\
14 q* 4 2qcos 0«

La fuerza correspondiente al borde opuesto P;P; es

(+& +dyE) (+m+dym) . (+ 6 +dy &),



y la suma de ambas, es decir, la suma de las fuerzas

correspondientes a los dos bordes opuestos, es
ok T
dyt, =dy.—— =dy.dx.
oy oy
o B,
dy'q)\zdy. =dy.dx.
Sy
oC ST)\
dyC)\:dy. :dy.dx(p 4
oy Oy
dv.
+ q +8.T)\+t.v)\)

Del mismo modo, la fuerza correspondiente al bor-
de P,Ps se representa mediante sus componentes obli-

cuos

L

Por consiguiente, la resultante de las cuatro fuerzas de

borde es
BT)\ o
dyEl+de :dx.dy( + * )
* oy 0x
e Bv)\ 3Tp.
dyn, +dxn, =dx. y(_ — )
’ I Oy ox
3T7\ dv
dyC;\-{—dxC :dx.dy[p L o )+
; dy dx

oT
e it

dx

Bv)\

ol

Como el equilibrio del area elemental Py P;P;Ps re-

~ )—{—r.vp'-i-S(T)\——TP‘)-I-t-V)\]

quiere la anulacién del momento resultante de las cua-

tro fuerzas de borde, se ha de verificar

T .—dp.N e
cuyas proyecciones sobre los ejes coordenados se inser- €8 decir,
' G Pot—-T —— T,
tan en el siguiente cuadro: A ®
Ox Oy Oz
. dy.T .dy.T
Fidy Lo 0 ARl +ta.dy.T,
— &N, | g N l/1+‘1’+2‘1°"56” 0 dle/ 1+q'+2qcosbs
t* 14 p* 4+ 2p cos Oy i 14 p*+ 2p cos Oy

equivalente a las expresiones
14 q* 4+ 2q cos 0=
=== dy .V

—& =—dy.N l/
* t 1+ p*+ 2p cos b, ¢

]/I-l-q‘*—i—chosBx)
—C=—dy| —q.T N ) — =
W y\ —a 9+” %V 14 p* + 2p cos b,

=dy—(——qTH+p-vP)

Sl
B

con

14 q* + 2g cos b=
1+ p* + 2p cos by

Yy =

La suma de las fuerzas en los dos bordes opues-
tos PoPs y P:P: es

ok dv
de & =dx. Y —dx.dy. *
t dx ox
o T
dxn =dx. :dx.dy(— - )
i dx dx
bid T
de¢ =dx. 1t =dx.dy(—q Eo+
* dx Ox
Bv?. .
+p - —S. ph+r.v‘JL

y la resultante de las cuatro fuerzas de borde es

T ov
e )

Oy Ox

oT

O )

v

oT
dy & +dx € :dx.dy[p(_+ Iz )+
I oy dx
vl
+q(

3. Las fuerzas exteriores que actiian en la membrana
obedecen a una ley continua, que se puede suponer de-
finida en los puntos de ella o en sus proyecciones sobre
el plano xOy. Suponiendo esta wltima representacién, al

elemento de proyeccién dx.dy corresponde la fuerza
exterior

dy El-{—deP:dx.dy(

Ov.
)\-l-

dy n, +dx 7 =dx.dy(
A i 3

oT
ox

_|_

. )—}-r.vp-{-Z.sT—I—t.v)\]

—U.dx.dy |, —V.dx.dy —W .dx.dy
y las condiciones de equilibrio son:
T vy
=
oy ox
Oy oT
=
oy ox
3T v A 3T
Pt ) o[t ¢
Oy Ox oy ox

+row+.2.s.TH+t.vA=W,
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y, teniendo en cuenta para escribir la tercera ecuacién
a las dos primeras, queda el sistema definitivo de las

ecuaciones diferenciales del equilibrio de la membrana:

oT oy
ey

oy 0x

Bv)\ AT (11I)
St =

oy ox

r.vP'+2.s.T+t. v-’:W—p.U—q.V

VI. APLICACION AL PARABOLOIDE
HIPERBOLICO
1. Se adoptan como ejes coordenados los correspon-

dientes al vértice de la superficie. La ecuacién de ésta es:

z=k.x.y
y
p=k.y g=Fk.x r=0 s=Fk =0
Las ecuaciones del equilibrio de esta membrana son:
T oy
SN B )
Sy ix
Bv)\ 3T (Iv)
+ =V
Oy Ox
2.k.T=W —k(y.U+x.V)
2. Ley de cargas idénticamente nula
U=V=W=0.
Resulta:
T=0 v\ =fi(x) v =1()
14 K*«* 14 E'y*
N\ = fi(x) _ Np. = [ (y) P
14 K'y* 1+ K«

Las funciones f;.f. corresponden a leyes de carga que
se pueden establecer en los bordes, en la direccion de

las generatrices.
3. Ley de cargas uniforme con relacién al plano xOy

U=V=0 W = constante.
Resulta:
W l/1+_k§ VW
T:7k_ N, =fi(x) -l_+—k73; N\L:f,(y) —1-:-’;;;

4. Ley de cargas uniforme con relacién a la mem-
brana. Sea P su valor en la direccion del eje O.. Al
elemento de proyecciéon dx.dy corresponde el elemento

de membrana d).dy., cuya area vale
d\.dy .sen ¢.
Segin la férmula (II) de V.1, se tiene:
(p.q-+ cos 0z )*
(14p') (1+4")

sen*¢ =1—cos'p =1
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y el drea antes indicada es:

d\.dp..sen o= dx.dsten 0= + K (2 + y* — 2xy cos 0 )

Por consiguiente,

W':P.Vsen’oz+k’(x’+f—2xycos6z)=

=P .senill V—a

con
' 2
G=q+ ).(x’—l—y’—.‘?xycos 6 )
sen
Resulta:
P.sen 0= .
T=——nwJ ¢
2k
oT Pk x—1ycos 0z
%  Z2.semf. rs
ST Pk y—xcos 0z
oy T ele VE
P.k x—7ycos 0z
v, = fi(x) .dy
2 sen Oz V_(g
P.k y —xcos 0.
v =fi(y) — .dx.
® 2 sen 0= e
E integrando
P .sen 20 =
v)\zFx (x) + l/@ o
P .Eksen 0 k
———.xlge‘[(y—xcosﬂ) +V (2)]
2 sen 0
P.sen20

0 ol R B W e
¢ 4k

P.ksen 0 k

——.ylg-e [(x——ycos 0)
2

+ﬂ VE]

sen O

5. Ley proporcional a la altura de la membrana.

O sea:
U=V =0 W=k.x.y.sen 0 .P.
Resulta:
Psen 0 ST Psenb ST Psen 0
r=———mxy . ——=————§ . — =——— 2.
2 dx 2 Sy 2
P sen 0

oT
& f 0x
oT

fa (y) —
i f 3y

dy=fi(x) ———y*
4

Psen 0
dx=fs (y)——Tx'




Iglesia proyectada y construi-
da por el autor en Caracas.

VI. ESTRUCTURA DE LAS IGLESIAS
(EN TIRO AL BLANCO) Y EN
LA CANADA (PLAN DEL BANCO
OBRERO 1956)

La estructura se compone de tres pérticos iguales,
situados en tres planos verticales radiales. En el diedro
formado por dos de estos tres planos queda alojada
una membrana en paraboloide hiperbélico. Las seis
membranas principales transforman las cargas verticales
en empujes, que se componen dos a dos formando los
empujes activos en la direccién de las barras inclinadas
en los pérticos. El calculo de éstos implica, simplemente,
el establecimiento del sistema de ecuaciones de los des-

plazamientos. La ecuacién de la membrana es:

z = . 0447 xy.

El peso propio, con revestimientos posibles en intra-
dés y extradés quedé fijado en 200 kg/m’, y la carga
atil, de acuerdo con las normas, en 100 kg/m®. Resulta
asi, como primera aproximacién para los esfuerzos tan-
genciales puros, la traccién y la comprensién, los si-
guientes valores:

T =300 X 0°86 : 0°0894 = 2.910 kg/m
2910 X ctg. 30° = 5.020 kg/m (traccion)

2910 X tg.30° = 1.670 kg/m (compresién)

Resultando como valor unitario de la comprensién en

el hormigén:
1.670 : 400 = 418 kg/cm*

Pero la carga atil, cuya expresién es
S=300—200) ¢

se va reduciendo a medida que el punto se aleja del

vértice de la superficie.

En los cuatro vértices del contorno se tiene:

0°0447 \?
@1:1+(*— L8938 = 1’2150
0°860
00447 \*
Gi= Qi=1+ (893" + 357 —2 X
0’866
X 893 X 357 X 0°5) = I’164
0°0447 \*

X 357 = 1’0346
0’866

Q33:1+

200V ®.=220 . S.=80ke/m

200V @o=216 ... = 5 =84 kit

200V Gs=903 ~ . Si=97kg/m

La simplificacién adoptada no introduce, pues, valores

peligrosos.

Las membranas pequefias se calculan de modo ana-
logo, pero el peso propio ha de ser estimado en los
puntos de méixima pendiente. Finalmente, los nervios
de contorno en todos los casos fueron proyectados de
modo que puedan soportar los empujes axiales de las

bévedas y resistir en régimen de flexién su propio peso.

33






