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I . PREÁMBULO 

En la construcción moderna el empleo de las bóvedas 

se va haciendo cada vez m·ás frecuente. 

El abandono parcial de los techos planos no . obedece 

a capricho:.. Las construcciones abovedadas se impon~n 

no solamente por su belfoza, sino principalmente por 

su economía y sus posibilidades técnicas. El Banco 

Obrero, en el conjunto de sus trabajos del año presen· 

te (1956), ha dado amplia cabida al empleo de cubiertas · 

abovedadas. Más de 40. edificios han sido construídos con 

este sistema, que es, a la vez, antiquísimo y muy mo· 

derno. 

Nuestra experiencia ha sido, afortunadamente, satis· 

factoría desde el punto de vista técnico, y nos sentimos 

muy honrados al presentarla a nuestros colegas, con el 

deseo de que pueda serles útil y con la esperanza de 

mejorar nuestros propios conocimientos con la colaho· 

ración de su competente crítica. 

11. INTRODUCCIÓN 

El estudio de las membranas comprende dos partes. 

La primera consiste en la consideración, de carácter ge· 

neral, del esfado elástico (plano) de un punto ordinario 

de la membrana. La segunda establece las ecuaciones 

diferenciales de su equilibrio. Estas ecuaciones depen· 

den del siste~a de coordenadas elegido para representar 

la membrana como la forma geométrica. En cada caso 

se busca el sistema de coordenadas que conduzca a las 

ecuaciones más sencillas. Sin embargo, el proceso de 

obtención es, en todos los casos, el mismo. La integra· 

ción del sistema de estas ecuaciones es un problema 

puramente matemático. Cuando la obtención de las fun· 

ciones primitivas es muy laboriosa o no se conoce, pue· 

den emplearse los métodos de integración aproximada 

(diferencias finita~). Las constantes de integración se de· 

terminan mediante condiciones prefijadas en los .bordes 
. . 

de la me/mbrana . . Por defini~ión, u~a b6veda es mem· 

brana cuando el sistema .de las fuerzas exteriores que 

en ella actúa se equilibra con un sistema de fuerzas 

interiores en el que los tensores de .fuerzas unitarias 

son planos y están situados en los planos · tangentes de 

la membrana. 

Las funciones primitivas determinan las reacciones de 

la membrana a lo largo . de sus bordes .. Dichas reaccio· 

nes tienen que ser recogidas generalmente mediante ele­

mentos constructivos ajen9s a la ,membrana. Cuando , el 

peso de éstos es insignificante, pueden quedar sumergi· 

dos en el espesor de ella. Generalmente no sucede así. 

El peso propio de los bo~des suele no 'ser despreciable. 

Si ha de ser resistido por la propia bóveda, el . régimen 

de ésta deja de ser el de membrana. 

111. ESTADO ELÁSTICO PLANO 

l. Cónsideramos un punto ordinario ·O perteneciente 

a una superficie S. Admitimos que, en un entorno espa· 

cial de O suficientemente pequeñ.o., el plano tangente 

y la superfici~ están confundidos. La parte de S in,.terior 

en el entorno espacial considerado e& el entorno super· 

ficial de O. Los entornos. superfici!lles de los pun~os or­

dinarios, si son suficientemente 'p équeños, son planos. 

• 1 

FIG. l . 

Sea .(fig, 1) el entorno superficial del punto O. En su . 

plano, y con origen en O, se determinan dos semirrec· 

tas (ni. t,) que forman un cuadrante positivo. Las se· 

mirrectas ni . ti son, respectivamente, origen y extremo 

del cuadrante. La semirrecta ti y su complementa~ia t'i 

dividen .el entorno en do.s semientornos. Por co~venio, 

atribuímos a la semirrecta ni el semientorno que .no la. 

contiene. Existe una corresponde~cia .biunívoca entre las 

semirrectas n, y los semientorn.os. Cada_ semientorno que· 

da repr,esentado por la smnirrecta correspondiente. 

2. Supongamos determii:iada . una . función vectorial de 

la semirrecta ni de tal modo que a cada semirrecta . n1 

corresponda una fuerza F vinculada en O y situada en 

el plano del entorno. Esta función, además, hará corres· 
'" p.onder. a la semirrecta n'1 comp,lem_entaria de .n, el vec· 

tot - F opuesto a F. 
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Para precisar la exposición, supongamos también que 

el entorno es circular, de diámetro o y centro en O. 

El segmento de la recta (ti + t' ,) contenido en el en· 

torno es el ''borde" del semientorno determinado por n,. 
Llamamos fuerza de borde correspondiente a n, al 

vector o . F (siendo, en esta expresión, o un escalar). 

A U;'J- borde de longitud igual a la unidad corresponde 

una fuena de valor vectorial F. Por esta razón, las fuer· 

zas F se llaman "fuerzas unitarfas". 

Postulado: La situación mecánica del semi entorno liga· 

do a n, es idéntica cuando se considera como parte del 

entorno completo y cuando se considera separado de 

su semientorno complementario y en su borde aplicada 

la fuerza de borde. La fuerza de borde equivale, pues, 

mecánicamente al semientorno complementario. 

En lo sucesivo, la fuerza unitaria F se considera re­

presentada por sus dos proyecciones (N,. T,) ortogo· 

nales, sobre ( n1 . t,), respectivamente. 

n, 
o 

1 1 
ix Ny 

ha de quedar cumplido, pues, por las otras tres, que son 

infinitésimos de primer orden. 
n 

Supongamos que el ángulo en O vale --, que OA 
2 

Y OB son los ejes Ox . Oy de un sistema cartesiano, 

que rn es el ángulo de n, semirrecta del borde AB, con 

el eje OX, y que 

«= cos ti) 

Los lados del triángulo valen 

AB=df.. 

~=sen rn 

OA = sen rn • AB = ~ . d f.. 
OB = cos rn.AB. =a. df.. 

Las dos ecuaciones del equilibrio son: 

en el eje Ox: 

-a.df...N,, + ~.df...T11 +a.df...N,-~.df...T,=0. 

en el eje Oy: · 

-a.df... T,, - ~.df...Ny +~.di.. .N, +a. df... T, =O, 

A 

FIG. 2. 

3. Fig. 2: Equilibrio de un triángulo.-El triángu· 

lo ABO está contenido en el entorno superficial de O. 

Las fuerzas exteriores que actúan en A B O son exclu­

sivamente superficiales, y definidas mediante una ley 

continua, que permite expresar su valor total para A B O 

en la forma V . d Q, donde V representa un vector fi. 

nito y dQ el área de ABO. 

Tomando como bordes los tres lados del triángulo y 

separándolo del resto de la superficie, las tres fuerzas 

de borde y la de superficie han de estar en equilibrio. 

Como la fuerza de superficie es un infinitésimo de 

segundo orden, se puede considerar nula. El equilibrio 
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o sea: 

- a.N,, + ~- Ty + a.N,-?. T, =0, 
- a.T,, - ~.N~ + ~.N,+a.T, =0. 

de las cuales resulta: 

Ts=a'.T,, +W.T11 -a.~(N,,-N11 ) 

N,=a'.N,, +W.N11 -a.~ (T11 -T,,J 
(1) 

En estas expresiones no interviene la distancia de O 

a la recta AB. Por consiguiente, valen para el caso lími· 

te de fa recta AB perteneciente al punto O. Una vez de­

terminado el valor de la fuerza unitaria en dos bordes 

ortogonales, queda determinado en todos los demás. 
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( FIG. 3. 

4. Fig. 3: Equilibrio de un rectángulo.-El rectán,-
1 
' gulo ABCD está contenido en el entorno superficial 

de O. Como en el caso anterior, se consideran sus lados 

como bordes de separación de la restante superficie, y 

se desprecian las fuerzas superficiales .por ser infinité· 

simos de segundo orden. Se tiene 

AB = CD=2 .dy BC =DA = 2. dx. 

La resultante de las fuerzas de borde es nula. Pero 

el momento resultante, con relación al punto O, ha de 

cumplir la condición 

2.dy.T,. .2.dx+2.dx.T9 .2.dy=O, 

que implica 

T,.+T9 =0. (11) 

S. Fórmulas finales.-Si en las expresiones (1) se pone 

T,. =-T11 =T, 

resultado de la (11), queda 

Coino 

T, =(a•-~'). T- a.~ (N,. -N11 ) 

Ns= a' .N,. + W .N11 +2 .a. ~.T 

a' - ~· = cos' w - sen' w = cos (2. ui) 

2 a ~ = 2 . cos w. sen w = sen (2 . w). 

se verifica 

N.-N11 
T~ =T. cos (2. w) - • sen (2. w). 

2 

Para las raíces de la ecuación transcendente 

2.T 
tg (2. w) = ----

se anula T,. 

Dicha ecuación solamente es indeterminada si 

T = ·N,. -N9 =O, 

(111) 

en cuyo caso T, =O. Cuando T, =O, la dirección n, 

correspondiente se llama "principal". 

Por consiguiente, hay siempre en el entorno de O dos 

direcciones principales, o todas sus direcciones son prin­

cipales. 

Adoptando como ejes coordenados las dos direcciones 

principales, y designando con (N, . T,) a la fuerza uni­

taria ligada a la dirección Or = n,, las expresiones (111) 

adquieren la forma 

T, =a. ~(N9 -N,.) 
N, = W .Ny +a' .Nx 

Los componentes coordenados (X . y) 

en dichos ejes son: 

Xr = a.Nr -~.Tr = a.N,. 
Y,=~.N, +a.T,=~.Ny 

y como 

a.•+ W=l, 

resulta 

X/ Yr' 
---+---=1 

N,.' Ny' 

(IV) 

de (N .T) 

¡ (V) 

(VI) 

Los puntos extremos de los vectores fuerzas unitarias 

pertenecen a la elipse representada por la fórmula (VI), 

que se llama "elipse de Lamé". 

~ 
: lx • 

··~ 

FIG. 4. 

6. Fig. 4: Círculo de Mohr.-Las fórmulas (111) equi­
valen a las siguientes: 

N11 - N,. 
T, = . sen. (2. w) 

2 
(VII) 

N9 +N,. N 11 -N,. 
---+ . cos. (2. w) 

2 - 2 

En el cuadrante (t,. n,) estas expresiones son las .ecua­

ciones paramétricas de un círculo. 

El valor máximo de la componente tangencial Tr es el 

radio del círculo, e·s decir, 

N11 -J\l,. 
Tmax. = -----, 

2 

y siempre se produce en las bisectrices de las direcciones 

principales. 

Cuando las dos fuerzas unitarias principales son de 

signo opuesto, es decir, cuando una es compresión y 

. la otra es tracción, hay dos bordes, simétricamente situa­

dos con relación a las direcciones principales, en los que 

se anula la componente normal Nr. Dichos bordes so­

portan una fuerza. unitaria tangencial "pura'', cuyo 

valor és 

Tr= V N11 .N,. 
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Esta fuerza tangencial pura solamente coincide con 

la fuerza tangencial máxima cuando 

La dirección wo correspondiente a los bordes de fuer­

za tangencial pura está determinada por la relación 

V_N_y_._Nx_ =V Nx 
tg wo = -

N9 N9 

Cuando se conocen los valores N, . N, . N, de los tres 

componentes normales correspondientes a tres direccio­

nes ni . n, . n., de la s cuales n. es bisectriz de las otras 

dos y éstas, n, . n., son ortogonales, la construcción del 

th. 

FIG. 5. 

círculo de )fohr queda determinada, puesto que la posi­

ción del centro C corresponde al valor 

N,+N, 
2 

y se verifica 

cs.= P,s .. 

7. El análisis de las fuerzas internas de una mem· 

brana está completo cuando se conocen las dos direc· 

ciones principales en cada uno de sus puntos y las 

fuerzas unitarias que les corresponden. Las direcciones 

principales constituyen, sobre la membrana, dos campos 

ortogonales de direcciones, cuyas líneas envolventes se 

denominan "líneas isostáticas". Por consiguiente, para 

cada sistema de cargas hay dos familias de líneas isos­

táticas ortogonales. Otros dos campos de direcciones que­

dan determinados mediante las direcciones de las fuerzas 

unitarias tangenciales puras, cuando existen. La determi-
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nación de las líneas envolventes de estos campos de di· 

recciones es imprescindible para la colocación correcta 

de las armaduras de hierro. 

IV. EL PARABOLOIDE HIPERBÓLICO 

l. Determinación de la mper/icie.-Un cuadrilátero 

A.BCD se llama "alabeado" cuando el plano determi­

nado por tres de sus vértices no contiene el cuarto. 

A 
b 

e 

FIG. 6. 

Existe un haz de planos H , de arista impropia, determi· • 

nada por los puntos impropios de los dos lados opues­

tos ( AB, CD) del cuadrilátero. 

Hay otro haz de planos H, de arista impropia, deter­

minada por los puntos impropios del otro par de lados 

opuestos (BC. DA). Las rectas r esultantes como ínter· 

sección de un plano de H, con un plano de H, consti-

t 

a, 

/ 

FIG 7. 

tuyen una radiación de rectas, cuyo vértice impropio es 

la intersección de las dos aristas impropias de H, y H 1• 

Cada plano de H, corta al par de lados AB. CD, o a 

sus prolongaciones, en sendos puntos. Cada uno de estos 

pares de puntos determina una recta, que se llama 

"generatriz". El conjunto de las generatrices es una 



/ 

1 

"familia" de rectas, cuya superficie envolvente es, por 

definición, el paraboloide hiperbólico. El mismo proce­

so, ejecutado con los planos de H, y el par de lados 

BC. DA, conduce a un paraboloide hiperbólico coinci· 

dente con el anterior. 

En efecto, el segmento 11, tanto si se calcula mediante 

él primer proceso como si se calcula mediante el segun· 

do, vale 

ce, . 
llr = . AG .AE (1) 

AB.AD 

2. Adoptando como triedro cartesiano de referencia 

el determinado por el plano B.AD, el plano de H, ,que 

pasa por AD y el plano de H, que pasa por AB, la ex· 

presión (1) adquiere la forma 

z=k.x.y (11) 

Hay en el paraboloide hiperbólico un punto, llamado 

"vértice'', en el cual 

n 
6x= ·.6y=-. 

2 

En efecto, para que (1) sea el vértice se deben veri· 

ficar las siguientes relaciones entre sus coordenadas: 

k Zo = Xo. cos (n- 6g ) = - Xo, cos 69 

zo= k.xo.yo 
Yo=----­

cos 6y 

cos 6,. 
Zo =Yo. cos (n- 6,. ) =-yo. cos 6,. 
zo = k .x •. y. 

x.=---~-

k 

Para operar con el indicado triedro son importantes 

las siguientes fórmulas: 

cos 6, 

CCr 
k=-­

AB.AD 

AB' + AD' - BD' 

2 .AB .AD 

BC' -AD' - CCl 
cos 6y = ----------

2 .AD.CC, 

CD' - AB' - CCl 
cos 6,. =----------

2 .AB .ce, 

Finalmente, si es 6 el ángulo formado por las dos 

generatrices que pasan por el .vértice, 

COS 6z - COS 6x . COS 6y 
cos 6 = ------------

sen 6 .. - sen By 

Por consiguiente, cualquiera que sea el cuadrilátero 

alabeado generador del paraboloide hiperbólico, me­

diante las expresiones anteriores se puede determinar 

la posición de su vértice y la del triedro correspon· 

diente. 

V. ECUACIONES DEL EQUILIBRIO 
DE UNA MEMBRANA 

l. Los valores angulares de las caras del triedro de 

referencia son 6x. 6 y. 6z. La membrana está represen· 

ta da por una función explícita: 

z=f (x.y) 

con derivadas de primero y segundo orden, y estas últi­

mas continuas. 

Representamos con dx, dy, los incrementos de las va· 

riables independientes. Represnetamos con /!;.,¿z. 6.yz los 

incrementos de la variable dependiente z cuando y o x, 

respectivamente, permanecen constantes. Usaremos la no· 

tación de Monge para las derivadas parciales: 

oz oz 
p= q= 

ox o:r 
o'z ll'z 

r= s= t= 
ox' ox.oy 

y las restantes notaciones quedan determinadas 

te la figura 8. 

FIG. 8. 

Se verifica 

y 

!:.)...• = dx' + tJ.,.z' + 2 . dx. 6.,.z • cos 66 
AfL' = dy' + 6.9z' + 2. dy. 6.9z. cos 6,. 

dk = dx V 1 + p' + 2 • p • cos 69 

d11 = d:r V 1 + q' + 2. q. cos 6,. 

Por el teorema de los senos 

d,,z dk 

sen 6y 

o sea: 

d,.z d,.z dx 

o'z 

o:r' 

median· 

sen w}.. =---.sen 69 =---.---sen69 = 
d>.. dx dk 

p. sen 69 

V 1+p'+2. p. cos 6y 

(1 + p • cos 6 y)' 
coi! w}., = 1-sen' w}.. = 

1 + p' + 2p . cos 6y 
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Por consiguiente, valen las expresiones 

p .sen 6y 
sen wk = ----------

V 1+p'+2. p. cos 6r 

1 +p. cos 6y 
cos (l)k = ----------

V 1+p'+2. p. cos Oy 

q. sen Ox 
sen w = ----------

11 V 1 + q' + 2. q. cos 6x 

1+q.cos6x 
COSUJ =----------

l1 V 1+q'+2. q. cos 6x 

El ángulo cp, determinado por los dos 

FIG. 9. 

Ox 

-dA. .TJ.. -dx.Tk 

elementos 

Oy 

o 

2. En el entorno superficial de Po (figs. 8 y 10) se 

considera la fuerza unitaria del borde Po P1 que se des· 

compone en las direcciones Po P1 y Po P,. Sus dos 

FIG. 10. 

\ 

\ 
\ 
\ 
\ 
\ 
\ 

__ P1:} 

proyecciones oblicuas se designan, respectivamente, 

con TA. . NA.. Por consiguiente, la fuerza total en el 

borde es 

(-dA..n 

Cada uno de estos dos componentes se proyecta sobre 

los tres ejes de coordenadas, y así resulta el cuadro 

siguiente: 

Oz 

-p.dx.T">.. 

V 1 + p· + 2p w6, V 1 + v· + 2p w6, 
-á>..N">.. o -dxN">.. -dx.nA. .q · 

1 + q' +2qw6., 1 + q' +2qw6 .. 

lineales d">.., d11, se deduce de las relaciones entre los 

triángulos esféricos de la figura 9, y vale 

cos cp = cos (6., - wiJ . cos (69 - w.1,_J + 
cos 6,, - cos o ... cos o, 

sen O., • sen 69 

Si en el triedro de referencia son 

n 
6.,= 6é=-­

z 
las fórmulas anteriores se simplifican: 

p 1 
sen~= 

V 1 +v· 

cos~ = 

V 1 +P' 
q 1 

sen w = 
11 V 1 +q• 

cos (1)11 = 

V 1 +q• 

p .. q + cos o. 
cos 'P = 

V (1 + p'). (1 + q') 
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o sea: 

-~=-dx.Tk 

V 1 + p' + 2p cos 6!1 
-71).. = -dx.m. =-dx. v).. 

1 + q' + 2q cos 6., 

( V 1 + p' + Zp cos 6!1 ) 
- e">..= - dx P. n + q m = 

1 + q' + 2q cos o .. 

=-dx (p. TO+ q.v:¡j, 

poniendo, para simplificar la escritura, 

V 1 + p' + Zp cos 6!1 
v">..=N">.. 

1 + q' + Zq cos O., 

La fuerza correspondiente al borde opuesto P, P, es 



y la suma de ambas, es decir, la suma de las fuerzas 

correspondientes a los dos bordes opuestos, es 

Del mismo modo, la fuerza correspondiente al bor· 

de Po P. se representa mediante, sus componentes obli· 

Por consiguiente, la resultante de las cuatro fuerzas de 

borde es 

( 
oT). ov ) 

arE1. +dx e =dx.dr __ +--11-
11 or ox 

( 
llvf.. oT ) 

dyr¡). + dx r¡ = dx. dy - -~ - - __ 11_ 
11 oy ox 

[ ( 
'ilT). ov ) 

dyC).. + dx C: = dx. dy p -- + __ 11_ + 
11 'ily ox ' ' 

( 
ov). 'ilT ) ] + q __ - __ 11_ + r • v + S (T). - T ) + t . v). 
or . ox 11 11 

Como el equilibrio del área elemental Po P, P, P. re· 

quiere la anulación del momento resultante de las cua· 

cuos l . tro fuerzas de borde, se ha de verificar 

( + d11. T • - d11. N ) 
11 11 Tf.. +T

11 
=0, 

cuyas proyecciones sobre los ejes coordenados se inser· es decir, 

tan ·en el siguiente cuadro: 

Ox 

+ d11. T
11 

o 

-dy.p .Nl1 V - d11. N 1+q•+2 q cos º"' 
' 11 

1 + p' + 2p cos 08 

equivalente a las expresiones 

. V 1 + q' + 2q cos o .. 
- E = - dy. N = - dy. v

11 11 11 · 1 + p' + 2p cos By 

-r¡ =+dy._.T 
11 ' 11 ' 

( V-1 _+_q_:_' -r-' -2q-c-os-B-.. ) 

- C: = - dy - q . T + p • N • · = 
11 11 11 1 + p' + 2p cos 08 

con 

= dy - ( - q T l1 +p. v 
11
J 

V 1 + q' + 2q cos B .. 
v ·=N 

P. 11 1 + p' + 2p cos 08 

La suma de las fue1·zas en los· dos bordes opues· 

tps P,P, y p,p, es 

¡¡e 'ilv 
dx E = dx . ___.J:_ = dx . dy . __ 11_ 

11 llx llx 

dxr¡ =dx. _1 =dx.dr(- oTl1 ) 
11 llx ox 

dx C: = dx. __ 11_ = dx. dy - q _ _ 11_ + 'ilC: ( oT 

11 llx . ·ax 

llv · ) 
+P--11--s.T +r.v ox 11 11 

T f.. = - T l1 = T, 

Oy Oz 

+ dy.T 
11 

+q.dy.T 
11 

o V 1 + q' + 2 q cos O,, 
dyN 

11 1 + p' + 2p cos 08 

y la resultante de las cuatro fuerza s de borde es 

dr E1. + dx E = dx.dr (~ + --5:_) 
11 'ily 'ilx 

( 
OY). •, 'ilT ) 

dyr¡).. +dx r¡ =dx.dy - - +--
11 'ilr ll:i: 

dy e). + dx e: = dx . dy f p ( __'!!__ + Qy 11 ) + 
11 ay ax 

+ q(~+!!_)+r. v +2 .sT+t.v)..] 
'ily 'ilx 11 . 

3. Las fuerzas exteriores que actúan en la membrana 
obedecen a una ley continua, que se puede suponer de· 

finida en los puntos de ella o en sus proyecciones sobre 

el plano xOy. Supouiendo esta última representación. al 

elemento de proyección dx . dy corre·sponde la fuerza 
exterior 

-U .dx . dy -V .dx.dy -W . dx.dy 

y las condiciones de equilibrio son: 

'ilT llv11 
--+--= U · 

or ax 
ov/.. o T 

--+--=V 
or ax 

( 
oT . 'll~11 ) ( ovf.. oT ) 

p --+-- +q --+-- + 
~ 'ilx oy ox 

+ r • v11 + • 2 . s • T + t. v/.. :::::: W, 
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y, teniendo en cuenta para escribir la tercera ecuación 

a las dos primeras, queda el sistema definitivo de las 

ecuaciones diferenciales del equilibrio de la membrana: 

ilT ilv 
--+-P.- =u 

ily ilx 

ºY 

oT 
+--=Y 

ox 

r.v +2.s.T+t. v)==W-p.U-q.V 
p. ' 

(111) 

VI. APLICACIÓN AL PARABOLOIDE 

HIPERBÓLICO 

l. Se adoptan como ejes coordenados los correspon· 

dientes al vértice de la superficie. La ecuación de ésta es: 

z==k.x.y 

y 

p=k.y q=k.x t=O 

Las ecuaciones del equilibrio de esta membrana son: 

llT ov 
--+-ii--=u 

lly llx 

llv1 oT 
--+--=V 

(IV) 

ay llx 

2 .k.T= W-k (y.U+ x. V) 

2. Ley de cargas idénticamente nula 

U=V=W==O. 

Resulta: 

vl = /, (x) vp. = f () 

V 1 +k'x' 
Nl == f, (x) 

1 +k'y' V 1 +k'y' 
Np. ==/, (y) 

1 + k'x' 

Las funciones /,. f, corresponden a leyes de carga que 

se pueden establecer en los bordes, en la dirección de 

las generatrices. 

3. Ley de cargas uniforme con relación al plano xOy 

W = constante. 

Resulta: 

w V 1 +k'x' 
T == - N1 = /, ( x) 

2k 1 + k'y' V 1 +k'y' 

N\i ==¡, (y) 1 + k'x' 

. 
4. Ley de cargas uniforme con relación a la mem-

brana. Sea P su valor en la dirección del eje O,. Al 

elemento de proyección dx . dy corresponde el elemento 

de membrana dl . dp., cuya área vale 

dl. dp. . sen 'f'· 

Según la fórmula (11) de Vi.1, se tiene: 
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( p . q + cos IJ,. )' 
sen' <p = 1 - cos' <p = 1 --------­

(1 + p') (1 + q') 

y el área antes indicada es : 

dl. dp. · .<en 'f' == dx . dy V sen IJ,. + k' ( x' + y' - 2xy cos O., ) 

Por consiguiente, 

con 

W == P . V sen' 0,. + k' ( x' + y - 2xy cos ll,. ) = 

== P . sen O ... f$ 
.~ 

q, == q + k )'. ( x' + y' - 2xy cos ll,. ) 
sen O .. 

Resulta: 

E 

01' 

llx 

llT 

lly 

T = _P_._s_e'_'_º_"_ V$ 
2k 

P.k x-y cos 0,. 

2. sen O,. vq; 
P.k y-xcos O .. 

2. sen O., V1> 
P.k 

v1 =f,(x) 
f x-ycos ll .. 

.dy 
2 sen O,. vq; 

P.k f y-xcos O,. 
V =f1(y)- .dx. 

p. 2 sen llz. vq; 
integrando 

P. sen21l vq; v1 =F1 (x) + 
4k 

----.X lg e. (y- X COS IJ) - . - + vq; P .ksen ll [ k ] 

2 sen O 

P. sen21l 
V == F, (y) +----Vq) -

p. 4k 

P.ksenll [ k - ~r-=-] 
-----.ylg.e (x-ycos OJ--+ V q, 

2 sen ll 

5. Ley proporcional a la altura de la membrana. 

O sea: 

W==k.x.y.sen O .P. 

Resulta: 

P sen O oT P sen ll ilT 

ily 

P sen O 
T=---xy. ---y. ---x. 

2 ilx 2 2 

f ilT Psen O 
v1 = /, ( x) - -~- dy = /, ( x) - y 

ox 4 

f 
oT Psen ll 

v f,(y)- --dx=f,(y)----x' 
p. ily 4 
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Iglesia proyectada y construí· 
da por el autor en Caracas. 

VI. ESTRUCTURA DE LAS IGLESIAS 

(EN TIRO AL BLANCO) Y EN 

LA CAÑADA (PLAN DEL BANCO 

OBRERO 1956) 

La estructura se compone de tres pórticos iguales, 

situados en tres planos ver~icales radiale~. En el diedro 

form11do por dos de estos tres planos queda alojada 

una membrana en paraboloide hiperbólico. Las seis 

membranas principales transforman las cargas verticales 

en empujes, que se componen dos a dos formando los 

empujes activos en la dirección de las barras inclinadas 

en los pórticos. El cálculo de éstos implica, simplemente, 

el establecimiento del sistema de ecuaciones de los des­

plazamientos. La ecuación de la membrana es: 

z = .0447 xy. 

El peso propio, con · revestimientos .posibles en intra· 

dós y extradós quedó fijado en 200 kg/m2
, y la carga 

útil, de acuerdo con las normas, en 100 · kg/m2
• Re~ulta 

así, como primera aproximación para los esfuerzos ·tan· 

genciales puros, la tracción y la comprensión, los si· 

guientes valores: 

T = 300 X (}'86 : 0'0894 = 2.910 kg/ m 

2.910 X ctg. 30° = 5.020 kg/ m 

2.910 X tg. 30° = .l.670 kg/ m · 

(tracción) 

(compresión) 

Resultando como valor unitario de la comprensión en 

el hormigón: 
1.670: 400 = 4'18 kg/cm' 

Pero la carga útil, cuya expresión es 

5=300-200 -V$ 

se va reduciendo a medida que el punto se aleja del 

vértice de la superficie. 

En los cuatro vértices del contorno se tiene: 

0'0447 )' 
q;,. = 1 + (--- .8'93' = 1'2150 

. 0'860 ' 

( 

0'0447 ) ' . 
(/> , = (/>4=1 + (8'93' + 3'57-2 X 

• 0'866 

X 8'93 X 3'57 X 0'5) = 1'164 

( 
0'0447 )' 

c/> s = 1 + X 3'57 = 1'0346 
0'866 

200 -V$, = 220 

200-V$, = 216 

200 V"""$s = 203 

S, = 80 kg/ m' 

S, =84kg/m' 

Ss = 97 kg/ m' 

La simplificación adoptada no introduce, pues, valores 

peligrosos. 

Las me~branas pequeñas se calculan de modo aná· 

logo, pero el peso ' propio· ha de · ser estimado en los 

puntos de máxima pendié~te. Finalmente, los nervios 

de contorno en todos los casos ·fueron proyectados . de 

modo -que puedan soportar· los empujes axiales de las 

bóvedas y resistir en régimen de flexión su propio peso. 
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